Molecular basis for amyloid-β polymorphism
نویسندگان
چکیده
Amyloid-beta (Aβ) aggregates are the main constituent of senile plaques, the histological hallmark of Alzheimer’s disease. Aβ molecules form β-sheet containing structures that assemble into a variety of polymorphic oligomers, protofibers, and fibers that exhibit a range of lifetimes and cellular toxicities. This polymorphic nature of Aβ has frustrated its biophysical characterization, its structural determination, and our understanding of its pathological mechanism. To elucidate Aβ polymorphism in atomic detail, we determined eight new microcrystal structures of fiber-forming segments of Aβ. These structures, all of short, self-complementing pairs of β-sheets termed steric zippers, reveal a variety of modes of self-association of Aβ. Combining these atomic structures with previous NMR studies allows us to propose several fiber models, offering molecular models for some of the repertoire of polydisperse structures accessible to Aβ. These structures and molecular models contribute fundamental information for understanding Aβ polymorphic nature and pathogenesis.
منابع مشابه
Molecular Dynamics and Molecular Docking Studies on the Interaction between Four Tetrahydroxy Derivatives of Polyphenyls and Beta Amyloid
Interactions of 3,3',4,4'-tetrahydroxybiphenyl (BPT) and three isomeric 3,3",4,4"-tetrahydroxyterphenyls (OTT, MTT, PTT) with Alzheimer’s amyloid-β peptide (Aβ) were studied by molecular dynamics simulation and molecular docking. Structural parameters such as Root-mean-square derivations (RMSD), radial distribution function (RDF), helix percentage and other physical parameters were obtained. Th...
متن کاملNovel mechanistic insight into the molecular basis of amyloid polymorphism and secondary nucleation during amyloid formation.
The formation of amyloid β (Aβ) fibrils is crucial in initiating the cascade of pathological events that culminates in Alzheimer's disease. In this study, we investigated the mechanism of Aβ fibril formation from hydrodynamically well defined species under controlled aggregation conditions. We present a detailed mechanistic model that furnishes a novel insight into the process of Aβ42 fibril fo...
متن کاملStructural origin of polymorphism of Alzheimer's amyloid β-fibrils.
Formation of senile plaques containing amyloid fibrils of Aβ (amyloid β-peptide) is a pathological hallmark of Alzheimer's disease. Unlike globular proteins, which fold into unique structures, the fibrils of Aβ and other amyloid proteins often contain multiple polymorphs. Polymorphism of amyloid fibrils leads to different toxicity in amyloid diseases and may be the basis for prion strains, but ...
متن کاملEffect of creatine supplementation on cognitive performance and apoptosis in a rat model of amyloid-beta-induced Alzheimer's disease
Objective(s): Neuroprotective effect of creatine (Cr) against β-amyloid (Aβ) is reported in an in vitro study. This study investigated the effect of Cr supplementation on β-amyloid toxicity in vivo. Materials and Methods: Thirty two, male Wistar rats were divided into 4 groups. During ten weeks of study, control group went through no surgical or dietary intervention. At the 4th week of study S...
متن کاملEffect of Long-term Exposure to Extremely Low-frequency Electromagnetic Fields on β-amyloid Deposition and Microglia Cells in an Alzheimer Model in Rats
Background: Recently, researchers have considered extremely low-frequency electromagnetic fields (ELF-EMFs), as one of the non-invasive therapies, in the treatment of many severe neurological disorders, including Alzheimer Disease (AD). AD is a progressive neurodegenerative disease characterized by the deposition of amyloid plaques in the brain. However, the increase in microglial cells increas...
متن کامل